Basics of Set Theory

A set is understood to be a collection of certain well-defined objects, which in our view or conception composes a whole; these objects are described as elements of set A.

Written:
\(a \in A \) "a is an element of set A"
\(b \notin A \) "b is not an element of set A"

The definition of set A can occur in the following ways:

- explicitly, through the specification of all elements of the set, for example \(M = \{a, b, \ldots, z\}\); this is only possible for finite sets.

- implicitly, through the specification of a predicate, that is, a characteristic feature shared by all elements of the set. For example:
 \(M = \{x \mid x \in \mathbb{Z} \text{ and } x > 0; \mathbb{Z} = \text{set of natural numbers}\}\)
in this manner it is also possible to define infinite sets.

The number \(|M| \) of elements in a set M is called the cardinality of M.

Relationships between sets:

Equality:
\(A = B \iff \) every element A is also an element of B and vice versa;
also functions for \(A \neq B \)

Subset:
\(A \subseteq B \iff (x \in A \Rightarrow x \in B) \) for all \(x \in A \)
\(A \subset B \iff A \subseteq B \text{ and } A \neq B \)
(true subset)
Transitivity:
A ⊆ B and B ⊆ C ⇒ A ⊆ C

Special Sets:

Empty Set: \(\emptyset = \{ x | x \neq x \} \), also: \(\{ \} \)

Power Set: \(P(A) = \{ X | X \subseteq A \} \) Set of all subsets of A
Example: \(A = \{1,2\} \rightarrow P(A) = \emptyset, \{1\}, \{2\}, \{1,2\} \)

Product Set (Cartesian Product):
\(A \times B := \{(x,y) | x \in A \text{ and } y \in B \} \)
Set of all ordered tuples with ‘Coordinates’ \(x,y \)
General: \(A \times B \times C, \text{ etc.} \)
Specific: \(A \times A \times A \ldots \times A := A^n \)
for example: \(\mathbb{R}^3 \) three-dimensional, real number space (vector space)

Algebraic Operations of Sets:
Let \(A, B, C, \ldots \in P(M) \) be elements of set \(M \)

Intersection: \(A \cap B = \{ x | x \in A \text{ and } x \in B \} \)
A and \(B \) are disjoint, if \(A \cap B = \emptyset \)

Union: \(A \cup B = \{ x | x \in A \text{ or } B \} \)

Relative Complement: \(A \setminus B = \{ x | x \in A \text{ and } x \notin B \} \)
"A without B"
Some Laws of Set Algebra:

Commutativity: \(A \cap B = B \cap A \) (is equally valid for \(\cup \))

Associativity:
\((A \cap B) \cap C = A \cap (B \cap C) \)
(is equally valid for \(\cup \))

Distributivity:
\(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
\(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

Relations:
A subset \(R \subseteq X \times Y \) of the cartesian product \(X \times Y \) is a two-digit (binary) relation \(R \) between sets \(X \) and \(Y \).

The relation \((x,y) \in R \) can also be written as: \(xRy \)

N-ary relations are defined analogously.

Example 1:
"\(<" is a binary relation in \(\mathbb{R}^2 \): \((x,y) \in "<" \) or rather, \(x < y \)

Example 2:
"lies between" = \{ \((a,b,c) \mid a, b, c \in G \) and \(c \) is a point on the line \(g(a,b) \) \}
\(\subseteq G \times G \times G \) for the points in \(G \) a two-dimensional area \(G \)

Characteristics of Relations:

Reflexive: \(xRx \) e.g. "\(\leq \)" is reflexive

Symmetric: \(aRb \leftrightarrow bRa \) e.g. "\(= \)" is symmetric

Antisymmetric: \(aRb \) and \(bRa \) \(\rightarrow \) \(a = b \) e.g. "\(\leq \)" is antisymmetric

Transitive: \(aRb \) and \(bRc \) \(\rightarrow \) \(aRc \) e.g. "\(< \)" is transitive

\(R \) is an equivalence relation if \(R \) is reflexive, symmetric and transitive. The set of elements which are equivalence relations compose an equivalence class: \(R[x] = \{ y \mid (x,y) \in R \} \). Therefore, one can also form partitions (class separations) in a set.
Example:
"parallel" is an equivalence relation in the set of all lines in one plane; as a result, classes of parallel lines can be formed.

R is an ordered relation if R is reflexive, antisymmetric and transitive (e.g. ≤). Ordered relations are important for the sorting of data by size.