Lateral Earth Pressure Coefficient

- $K = \frac{\sigma_x'}{\sigma_z'}$ = lateral earth pressure coefficient
- $\sigma_x' = \text{horizontal effective stress}$
- $\sigma_z' = \text{vertical effective stress}$
- Ratio of resultant horizontal stress to applied vertical stress
- Similar to Poisson's Ratio for elastic materials

Mohr's Circle and Lateral Earth Pressures

- $\alpha = \frac{\theta}{2}$
- $\tau' = \sigma_1' + \sigma_3' \tan \phi' + c'$
- $\sigma_1' = \sigma_z' - 2\tau' \tan \phi' + c'$
- $\sigma_3' = \sigma_z' + 2\tau' \tan \phi' + c'$

Retaining Walls

- Necessary in situations where gradual transitions either take up too much space or are impractical for other reasons
- Retaining walls are analysed for both resistance to overturning and structural integrity
- Two categories of retaining walls
 - Gravity Walls (Masonry, Stone, Gabion, etc.)
 - In-Situ Walls (Sheet Piling, cast in-situ, etc.)
Groundwater Effects

Conditions of Lateral Earth Pressure Coefficient

- At-Rest Condition
 - Condition where wall movement is zero or “minimal”
 - Ideal condition of wall, but seldom achieved in reality

- Active Condition
 - Condition where wall moves away from the backfill
 - The lower state of lateral earth pressure

- Passive Condition
 - Condition where wall moves toward the backfill
 - The higher state of lateral earth pressure

Groundwater Effects

- Steps to properly compute horizontal stresses including groundwater effects:
 - Compute total vertical stress
 - Compute effective vertical stress by removing groundwater effect through submerged unit weight; plot on P_o diagram
 - Compute effective horizontal stress by multiplying effective vertical stress by K
 - Compute total horizontal stress by directly adding effect of groundwater unit weight to effective horizontal stress
Estimates of At Rest Lateral Earth Pressure Coefficient

- Jaky’s Equation
 \[K_o = 1 - \sin \phi' \]
- Modified for Overconsolidated Soils
 \[K_o = (1 - \sin \phi') \cdot OCR \cdot \sin \phi' \]
- Applicable only when ground surface is level
- In spite of theoretical weaknesses, Jaky’s equation is as good an estimate of the coefficient of lateral earth pressure as we have

Example of At Rest Wall Pressure

- Given
 - Retaining Wall as Shown
- Find
 - \(P_A \) from At Rest Conditions

Wall Movements Necessary to Achieve Active or Passive States

<table>
<thead>
<tr>
<th>Type of Backfill</th>
<th>Active</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense sand</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>Medium-dense sand</td>
<td>0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>Loose sand</td>
<td>0.004</td>
<td>0.04</td>
</tr>
</tbody>
</table>

\(Y \) = movement of top of wall required to reach minimum active or maximum passive pressure, by tilting or lateral translation.

\(H \) = height of wall.
Development of Passive Earth Pressure

\[K_o = 1 - \sin \phi' \]

\[K_o = 1 - \sin 30^\circ = 0.5 \]

At Rest Pressure Example

- Compute at rest earth pressure coefficient
- Compute Effective Wall Force

\[
\frac{P_o}{b} = \frac{y_1 z_1^2 K_o}{2} \]

\[
\frac{P_o}{b} = \frac{120 \times 20^2 \times 0.5}{2} \]

\[
P_o = \frac{12000 \text{ lbs}}{12 \text{ kips/ft}} = 6.67 \text{ ft}. \]

(valid for all theories)

Earth Pressure Theories

Development of Active Earth Pressure

\(\sigma_o = \text{at-rest pressure} \)
\(\sigma_p = \text{active pressure} \)
Rankine Coefficients with Inclined Backfills

\[
K_A = \cos\beta \frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\phi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\phi}}
\]

\[
K_p = \cos\beta \frac{\cos\beta + \sqrt{\cos^2\beta - \cos^2\phi}}{\cos\beta - \sqrt{\cos^2\beta - \cos^2\phi}}
\]

Inclined and level backfill equations are identical when \(\beta = 0\)

Example of Rankine Active Wall Pressure

- Given
 - Retaining Wall as Shown
- Find
 - \(P_A\) from At Rest Conditions

Rankine Theory with Inclined Backfills

\[
H = \text{Height of Wall}
\]

\[
\beta = \text{Slope Angle}
\]

For Granular Backfill \(\phi > 0, c = 0\)
Rankine Active Pressure Example

- Compute at rest earth pressure coefficient
 \[K_a = \tan^2 \left(45^\circ - \frac{\phi}{2} \right) \]
 \[K_a = \tan^2 \left(45 - 15 \right) = \frac{1}{3} \]
- Compute Effective Wall Force
 \[\frac{P_o}{b} = \frac{y_1 z_1^2 K_a}{2} \]
 \[\frac{P_o}{b} = \frac{120 \times 20^2 \times 0.333}{2} \]
 \[\frac{P_o}{b} = 8000 \text{ lbs/ft} = 8 \text{kips/ft} \]

Rankine Passive Pressure Example

- Compute at rest earth pressure coefficient
 \[K_p = \tan^2 \left(45^\circ + \frac{\phi}{2} \right) \]
 \[K_p = \tan^2 \left(45 + 15 \right) = 3 \]
- Compute Effective Wall Force
 \[\frac{P_o}{b} = \frac{y_1 z_1^2 K_p}{2} \]
 \[\frac{P_o}{b} = \frac{120 \times 20^2 \times 3}{2} \]
 \[\frac{P_o}{b} = 72000 \text{ lbs/ft} = 72 \text{kips/ft} \]

Summary of Rankine and At Rest Wall Pressures

- Classical earth pressure maximum value for \(\delta = 0 \)
 \[72,000 \text{ lbs.} \]
- Classical earth pressure minimum value for \(\delta = \theta \)
 \[12,000 \text{ lbs.} \]
 \[8000 \text{ lbs.} \]

Rankine Passive Pressure Example

- Classical earth pressure maximum value for \(\delta = 0 \)
 \[120 \text{ pcf} \]
 \[\phi' = 30^\circ \]
Example of Coulomb Theory

- **Given**
 - Wall as shown above

- **Find**
 - K_A, K_P, P_A

Solution for Coulomb Active Pressures

- **Compute Coulomb Active Pressure**

 $K_A = \cos^2(30 - \theta) \cos^2(0 + \phi) \left[1 + \sqrt{\frac{\sin(30 + \phi) \sin(30 - \theta)}{\cos(30) \cos(60)}} \right]^2$

 - $K_A = 0.3465$

- **Compute Total Wall Force**

 $P_A = 0.3465 \cdot \frac{1}{2} (120 \text{ pcf})(20')^2$

 - $P_A = 8316 \text{ lb/ft of wall}$

Typical Values of Wall Friction

<table>
<thead>
<tr>
<th>Interface Materials</th>
<th>Friction Factor, μ</th>
<th>Friction Angle, δ (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass concrete on the following foundation materials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean sand rock</td>
<td>0.70</td>
<td>15</td>
</tr>
<tr>
<td>Clean gravel, gravel-sand mixtures, coarse sand...</td>
<td>0.55 to 0.60</td>
<td>20 to 31</td>
</tr>
<tr>
<td>Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel...</td>
<td>0.45 to 0.53</td>
<td>24 to 29</td>
</tr>
<tr>
<td>Clean fine sand, silty or clayey fine to medium sand...</td>
<td>0.35 to 0.45</td>
<td>19 to 24</td>
</tr>
<tr>
<td>Very stiff and stiff clay and silty clay...</td>
<td>0.30 to 0.35</td>
<td>17 to 19</td>
</tr>
<tr>
<td>Medium stiff and stiff clay and silty clay...</td>
<td>0.20 to 0.35</td>
<td>17 to 19</td>
</tr>
</tbody>
</table>

(Masonry on foundation materials has same friction factors.)

Steel sheet piling against the following soils: | | |
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls...	0.40	22
Clean sand, silty sand-gravel mixture, single size hard rock fill...	0.30	17
Silty sand, gravel or sand mixed with silt or clay	0.25	14
Fine sandy silt, nonplastic silt...	0.20	11

Finned concrete or concrete sheet piling against the following soils:

- Clean gravel, gravel-sand mixture, well-graded rock fill with spalls...
- Clean sand, silty sand-gravel mixture, single size hard rock fill...
- Silty sand, gravel or sand mixed with silt or clay
- Fine sandy silt, nonplastic silt...

Various structural materials:

- Masonry on masonry, igneous and metamorphic rocks:
- 0.70 | 35 |
- 0.65 | 33 |
- 0.55 | 29 |
- 0.50 | 26 |
- Masonry on wood (cross grain):
- 0.30 | 17 |
- Steel on steel at sheet pile interlockings...
Solution for Coulomb Passive Pressures

- Compute Coulomb Passive Pressure
 \[K_p = \cos^2 (30+0) \]
- Compute Total Wall Force
 \[P_p = 4.0196 \]
- Compute Total Wall Force
 \[P_p = 96,470 \text{ lb/ft of wall} \]

Walls with Cohesive Backfill

- Retaining walls should generally have cohesionless backfill, but in some cases cohesive backfill is unavoidable.
- Cohesive soils present the following weaknesses as backfill:
 - Poor drainage
 - Creep
 - Expansiveness

Most lateral earth pressure theory was first developed for purely cohesionless soils (c = 0) and has been extended to cohesive soils afterward.

Theory of Cohesive Soils

Rankine Pressures with Cohesion (Level Backfill)

- Overburden Driving
 - Active
 \[\sigma_A = \sigma_1 \tan^2 (4\frac{\pi}{4} - \frac{\phi}{2}) - 2c \tan (4\frac{\pi}{4} - \frac{\phi}{2}) - \frac{\pi}{4} \]
 - Passive
 \[\sigma_P = \sigma_3 \tan^2 (4\frac{\pi}{4} + \frac{\phi}{2}) + 2c \tan (4\frac{\pi}{4} + \frac{\phi}{2}) + \frac{\pi}{4} \]

- Wall Driving
 - Active
 \[\sigma_A = \sigma_1 \tan^2 (4\frac{\pi}{4} - \frac{\phi}{2}) - 2c \tan (4\frac{\pi}{4} - \frac{\phi}{2}) - \frac{\pi}{4} \]
 - Passive
 \[\sigma_P = \sigma_3 \tan^2 (4\frac{\pi}{4} + \frac{\phi}{2}) + 2c \tan (4\frac{\pi}{4} + \frac{\phi}{2}) + \frac{\pi}{4} \]
Example of Equivalent Fluid Method

- Given
 - Wall as shown above
 - $K_A = 0.3465$
 - $K_p = 4.0196$
 - $\phi_w = 3$ degrees

- Find
 - Forces acting on the wall (both horizontal and vertical)

Comments on Rankine Equations

- Valid if wall-soil friction is not taken into account
- Do not take into consideration soil above critical height
- Do not take into consideration sloping walls
- For practical problems, should use equations as they appear in the book

$H_c = \frac{2c}{\gamma \sqrt{K_a}}$

Example of Equivalent Fluid

- Compute Equivalent Fluid Unit Weights (Active Case)

 \[
 G_h = \gamma K_a \cos \phi_w \\
 G_h = 120 \times 0.3465 \times \cos 3^\circ \\
 G_h = 41.52 \text{ pcf} \\
 G_v = \gamma K_a \sin \phi_w \\
 G_v = 120 \times 0.3465 \times \sin 3^\circ \\
 G_v = 2.18 \text{ pcf}
 \]

Equivalent Fluid Method

- Simplification used to guide the calculations of lateral earth pressures on retaining walls
- Can be used for Rankine and Coulomb lateral earth pressures
- Can be used for at rest, active and passive earth pressures
- Transforms the soil acting on the retaining wall into an equivalent fluid
Example of Equivalent Fluid

- Compute Wall Load (Passive Case)

\[P_p = \frac{G_h H^2}{2} \]
\[\frac{P_p}{b} = \frac{481.69 \times 20^2}{2} = 96338 \text{ lb/ft} \]

\[V_p = \frac{G_v H^2}{2} \]
\[\frac{V_p}{b} = \frac{25.24 \times 20^2}{2} = 5048 \text{ lb/ft} \]

- Compute Wall Load (Active Case)

\[P_a = \frac{G_h H^2}{2} \]
\[\frac{P_a}{b} = \frac{41.52 \times 20^2}{2} = 8304 \text{ lb/ft} \]

\[V_a = \frac{G_v H^2}{2} \]
\[\frac{V_a}{b} = \frac{2.18 \times 20^2}{2} = 436 \text{ lb/ft} \]

Terzaghi Model

- Assumes log spiral failure surface behind wall
- Requires use of suitable chart for K_A and K_p
- Not directly used in this course, but option in SPW 911

Example of Equivalent Fluid

- Compute Equivalent Fluid Unit Weights (Passive Case)

\[G_h = \gamma K_p \cos \phi_w \]
\[G_h = 120 \times 4.0196 \times \cos 3^\circ \]
\[G_h = 481.69 \text{ pcfs} \]

\[G_v = \gamma K_p \sin \phi_w \]
\[G_v = 120 \times 4.0196 \times \sin 3^\circ \]
\[G_v = 25.24 \text{ pcfs} \]
Homework Set 5

- Reading
 - McCarthy: Chapter 16
 - Coduto: Chapters 22, 23, 24 & 25

- Homework Problems
 - McCarthy: 16-1, 16-8, 16-12a, 16-17
 - Coduto: 25.3 (Hand and Chart Solutions); 25.5 (SPW 911)

- Due Date: 17 April 2002

Questions

Surcharge and Groundwater Loads

Figure 3-20 Lateral pressures, one soil, water, finite surcharge